On compact anisotropic Weingarten hypersurfaces in Euclidean space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compact hypersurfaces in euclidean space and some inequalities

let (m,g ) be a compact immersed hypersurface of (rn+1,) , λ1 the first nonzeroeigenvalue, α the mean curvature, ρ the support function, a the shape operator, vol (m ) the volume of m,and s the scalar curvature of m. in this paper, we established some eigenvalue inequalities and proved theabove.1) 1 2 2 2 2m ma dv dvn∫ ρ ≥ ∫ α ρ ,2)( )2 2 1 2m 1 mdv s dvn nα ρ ≥ ρ∫ − ∫ ,3) if the scalar curvatu...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Brownian Functionals on Hypersurfaces in Euclidean Space

Using the first exit time for Brownian motion from a smoothly bounded domain in Euclidean space, we define two natural functionals on the space of embedded, compact, oriented, unparametrized hypersurfaces in Euclidean space. We develop explicit formulas for the first variation of each of the functionals and characterize the critical points.

متن کامل

On the Invariant Theory of Weingarten Surfaces in Euclidean Space

We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal su...

متن کامل

Weingarten spacelike hypersurfaces in a de Sitter space

We study some Weingarten spacelike hypersurfaces in a de Sitter space S 1 (1). If the Weingarten spacelike hypersurfaces have two distinct principal curvatures, we obtain two classification theorems which give some characterization of the Riemannian product H(1−coth ̺)× S(1 − tanh ̺), 1 < k < n − 1 in S 1 (1), the hyperbolic cylinder H(1 − coth ̺) × S(1 − tanh ̺) or spherical cylinder H(1 − coth ̺)×...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2019

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-019-01315-8